Diazananographene with Quadruple [5]Helicene Units: Synthesis, Optical Properties, and Supramolecular Assembly

Author:

Ma Xiao-Hui1ORCID,Xing Jiang-Feng1ORCID,Chai Ling1ORCID,Deng Qing-Song1ORCID,Chen Xuan-Wen1ORCID,Su Hai-Feng1ORCID,Li ChaoORCID,Tan Yuan-Zhi1ORCID

Affiliation:

1. State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. of China

Abstract

A helical diazananographene (1) was successfully synthesized by employing sterically hindered t-butyl groups to inhibit further dehydrocyclization of [5]helicene units. These t-butyl groups stabilized the conformation of [5]helicene units, thus resulting in three stable conformers of 1, comprising a pair of enantiomers (1-(P, P, P, P) and 1-(M, M, M, M)) and a mesomer (1-(P, P, M, M)). In comparison to its planar analogs, helical 1 exhibited broadened peaks in both its absorption and emission spectra, leading to an increase in the emission quantum yield from 0.3 to 0.6. The significantly enhanced radiative decay rate (k r) accounted for the increase in the quantum yield of 1. Additionally, it was observed that the compound could be fully protonated upon the addition of an equivalent acid. Furthermore, 1 assembled into a chiral trimeric metallosupramolecular complex upon coordination with the PdII units. Both protonated 1 and the metallosupramolecular complex exhibited an enhanced circular dichroic response. These findings revealed that the incorporation of a helical structure and pyridinic nitrogen-doping into the nanographene can allow the synthesis of responsive chiroptical graphenic materials, which could serve as fundamental components for constructing chiral hierarchical metallosupramolecular structures.

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3