FGF19 Promotes the Proliferation and Insulin Secretion from Human Pancreatic β Cells Via the IRS1/GLUT4 Pathway

Author:

Zeng Ting1,Tang Xi2,Bai Xiaosu1,Xiong Haiyan3

Affiliation:

1. Department of Endocrinology, Longhua District People’s Hospital of Shenzhen, Shenzhen, China

2. Department of Cardiology, Longhua District People’s Hospital of Shenzhen, Shenzhen, China

3. Department of Nursing, Longhua District People’s Hospital of Shenzhen, Shenzhen, China

Abstract

Abstract Background Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic β cells in obesity-associated T2DM remains poorly understood. Methods Human pancreatic β cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic β cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. Results HG+PA treatment reduced the human pancreatic β cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic β cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. Conclusion In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic β cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.

Publisher

Georg Thieme Verlag KG

Reference39 articles.

1. Type 2 diabetes;E Ahmad;Lancet,2022

2. The dynamic plasticity of insulin production in β-cells;B B Boland;Mol Metab,2017

3. Erythrocyte saturated fatty acids and incident type 2 diabetes in Chinese men and women: A prospective cohort study;J S Lin;Nutrients,2018

4. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway;H Lu;Diabetologia,2016

5. Diabesity and antidiabetic drugs;J M Pappachan;Mol Aspects Med,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3