Creating Clarity in Noisy Environments by Using Deep Learning in Hearing Aids

Author:

Andersen Asger Heidemann1,Santurette Sébastien1,Pedersen Michael Syskind1,Alickovic Emina2,Fiedler Lorenz2,Jensen Jesper1,Behrens Thomas1

Affiliation:

1. Oticon A/S, Smørum, Denmark

2. Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark

Abstract

AbstractHearing aids continue to acquire increasingly sophisticated sound-processing features beyond basic amplification. On the one hand, these have the potential to add user benefit and allow for personalization. On the other hand, if such features are to benefit according to their potential, they require clinicians to be acquainted with both the underlying technologies and the specific fitting handles made available by the individual hearing aid manufacturers. Ensuring benefit from hearing aids in typical daily listening environments requires that the hearing aids handle sounds that interfere with communication, generically referred to as “noise.” With this aim, considerable efforts from both academia and industry have led to increasingly advanced algorithms that handle noise, typically using the principles of directional processing and postfiltering. This article provides an overview of the techniques used for noise reduction in modern hearing aids. First, classical techniques are covered as they are used in modern hearing aids. The discussion then shifts to how deep learning, a subfield of artificial intelligence, provides a radically different way of solving the noise problem. Finally, the results of several experiments are used to showcase the benefits of recent algorithmic advances in terms of signal-to-noise ratio, speech intelligibility, selective attention, and listening effort.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3