Künstliche Intelligenz zur diagnostischen Unterstützung ausgewählter seltener lysosomaler Speichererkrankungen: Ergebnisse einer Pilotstudie

Author:

Sieg Anna-Lena1,Martin Das Anibh2,Maria Muschol Nicole3,Köhn Anja3,Lampe Christina4,Kortum Xiauwei5,Mehmecke Sandra6,Blöß Susanne7,Lechner Werner8,Klawonn Frank5,Grigull Lorenz1

Affiliation:

1. Pädiatrische Hämatologie und Onkologie, Hannover, Medizinische Hochschule Hannover

2. Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover, Hannover Medical School

3. Pediatrics, Hamburg, Universitätsklinikum Eppendorf

4. Paediatrics, HELIOS Dr Horst Schmidt Kliniken Wiesbaden, Wiesbaden

5. Helmholtz-Zentrum f. Infektionsforschung, Biostatistics, Braunschweig

6. Medizinische Hochschule Hannover, Neurology, Hannover

7. Medizinische Hochschule Hannover, Internal Medicine, Hannover

8. Improved Medical Diagnostics, Data Mining, Hannover

Abstract

Zusammenfassung Hintergrund Die Diagnosestellung einer seltenen Stoffwechselerkrankung stellt eine Herausforderung für Familien und betreuende Ärzte dar. Um den Weg zur Diagnose zu unterstützen, wurde ein diagnostisches Werkzeug entwickelt, welches die Erfahrungen Betroffener nutzt. Methoden 17 Interviews mit Eltern oder Betroffenen einer ausgewählten, seltenen Stoffwechselerkrankung (Mukopolysaccharidose (MPS), M. Fabry und M. Gaucher) wurden durchgeführt. Die Ergebnisse wurden in diagnostischen Fragebogen abgebildet. Die Fragebogen wurden verteilt und von Eltern oder Betroffenen mit einer gesicherten Diagnose einer MPS, eines M. Fabry oder eines M. Gaucher beantwortet. Vier kombinierte Data Mining Klassifikatoren wurden trainiert, um in den beantworteten Fragebogen Antwortmuster zu finden. Ergebnisse Das binäre Data Mining System wurde mit 56 Fragebogen trainiert und erzielte eine Anzahl von 91% richtigen Diagnosen für die Diagnose ‚MPS’. Weitere 20 Fragebogen, die nicht Teil des Trainingsdatensatzes waren, konnten als ein erster prospektiver Test ausgewertet werden. Das System erkannte bei diesen 20 Fragebogen 18 bzw. 90% korrekte Diagnosen. Diskussion und Schlussfolgerung Fragebogen zur Diagnoseunterstützung basierend auf Interviews mit Eltern und Betroffenen wurden entwickelt und Antwortmuster durch Data Mining Verfahren ausgewertet. Diese vorläufigen Ergebnisse illustrieren, dass Data Mining Systeme Muster in Fragebogen erkennen können. Dieser Ansatz könnte zukünftig hilfreich bei der Erkennung ausgewählter Stoffwechselerkrankungen sein.

Publisher

Georg Thieme Verlag KG

Subject

Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3