Neuroprotective Potential of Hygrophila auriculata Targeting Oxidative Stress-Mediated Deficits in Streptozotocin-Induced Sciatic Nerve Injury

Author:

Jadhav Vishal B.ORCID,Vaghela Jai Singh1ORCID

Affiliation:

1. Department of Pharmacology, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, Rajasthan, India

Abstract

Abstract Objective Diabetic neuropathy, a microvascular complication of diabetes, affects 50% of individuals. Addressing this challenge is challenging due to its poorly understood origin and existing therapeutic approaches. This study used a methanolic extract from Hygrophila auriculata (MEHA) to treat oxidative stress-induced sciatic nerve injury in diabetic rats. Materials and Methods A study was conducted to assess the nociceptive reflex after a single streptozotocin (STZ) (45 mg/kg intraperitoneal.) injection. The rats were divided into six groups (n = 6 rats per group). Group I nondiabetic (ND) rats received oral gavage of 1% carboxymethyl cellulose (CMC). The diabetic rats in groups II to VI were given 1% CMC, 100, 200, and 400 mg/kg of MEHA, and 180 mg/kg of metformin (MET). The freshly prepared 1% (w/v) CMC suspension of both MEHA and MET was administered over a 4-week period, commencing from the 28th day through the 56th day post-STZ injection. The impact of STZ-induced sciatic nerve injury was analyzed through the estimation of serum glucose and glycohemoglobin levels, paw withdrawal and tail-flick latencies, oxidative stress markers, and neural histoarchitecture. Results Diabetic (STZ) control group II showed significantly altered serum glucose and glycohemoglobin levels, a reduced paw withdrawal threshold, and reduced paw withdrawal and tail-flick latencies in contrast to ND group I. Furthermore, increased oxidative stress in the sciatic nerve correlates with a reduced nociceptive threshold and disrupted neural histoarchitecture in diabetic rats. These behavioral, biochemical, and molecular changes were markedly and dose-dependently reduced by MEHA and MET treatments. Conclusion The antioxidant efficacy of MEHA modulated oxidative stress in STZ-sensitized diabetic rats and corrected neuropathic pain by attenuating hyperglycemia.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3