Affiliation:
1. Department of Orthopaedic Surgery, Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
2. Department of Molecular Microbiology and Immunology, Department of Surgery, University of Missouri, Roy Blunt NextGen Precision Health, Columbia, Missouri
Abstract
AbstractProlonged and incomplete osteochondral allograft (OCA) osteointegration is consistently cited as a major mechanism for OCA treatment failure. Subrejection immune responses may play roles in this mode of failure. Preimplantation OCA preparation techniques, including subchondral bone drilling, thorough irrigation, and autogenous bone marrow aspirate concentrate saturation, may dampen immune responses and improve OCA osteointegration. This study sought to further characterize potential immune system contributions to OCA transplantation treatment failures by analyzing donor–recipient ABO and Rh-factor mismatches and histological and immunohistochemical assessments of transplanted OCA tissues recovered from revision surgeries. Using a dedicated registry, OCA transplant recipients with documented treatment failures who met inclusion criteria (n = 33) as well as age-, body mass index-, and joint-matched patients with successful outcomes (n = 70) were analyzed to compare matched cohorts of patients with successful versus failed OCA transplantation outcomes. Tissues recovered from 18 failed OCA transplants and portions of 7 nonimplanted OCA controls were further analyzed to provide contributing evidence for potential immune response mechanisms. For patients analyzed, no statistically significant differences in proportions for treatment success versus failure based on mismatches for ABO type, Rh factor, or both were noted. Further, no statistically significant differences in proportions for histological immune response presence or absence based on mismatches for ABO type, Rh factor, or both were noted. Twelve (67%) of the failed OCA tissues contained lymphocyte aggregations in the subchondral bone, which were comprised of combinations of CD3 + , CD4 + , CD8 + , and CD20+ lymphocytes. The mechanisms of failure for these 12 OCA transplants involved insufficient OCA osteointegration. Results of this study suggest that T- and B-cell-mediated subrejection immune responses may play roles in OCA transplant treatment failures independent of donor–recipient blood type mismatch effects.
Funder
Missouri Orthopaedic Innovation Fund at the University of Missouri, Columbia, Missouri