Modification and Structure–Activity Relationship Study of Cyclodepsipeptide Trichodestruxin D Derivatives as Potential Antitumor Agents

Author:

Zou Jihua1,Lu Yifei1,Li Xiang2,Gai Conghao2,Zou Yan2,Zhao Qingjie

Affiliation:

1. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China

2. Department of Organic Chemistry, College of Pharmacy, Naval Medical University, Shanghai, People's Republic of China

Abstract

AbstractTrichodestruxins A–D are cyclic peptides isolated from the plant endophyte fungus Trichoderma harzianum with inhibitory activities against the proliferation of tumor cells. This study aimed to modify the structure of trichodestruxin D (TD-(R)) to improve its antitumor activity and analyze the structure–activity relationship (SAR) to provide references for lead optimization. In this study, seven TD-(R) derivatives (TD-(S), TD-1, 2, 3, 4, 5, 6) were designed by different strategies, namely amino acid mutation, configuration switching, replacement of ester with amide, and N-methylation/demethylation. Those derivatives were prepared by a solid-phase peptide synthesis strategy, and structurally characterized by high-resolution mass spectra. The inhibitory activities of the peptides against the lung carcinoma A549 cells were assessed by determining cellular proliferation and migration using CCK-8 and a 24-well migration plate. Our data confirmed the inhibitory effect of those derivatives on A549 cell proliferation, among which TD-(S), TD-1, and TD-2 displayed higher inhibitory activity compared with the control (DMSO) group, but their inhibitory activity was slightly decreased than that of TD-(R). The inhibitory activity of TD-3, TD-4, and TD-6 on A549 cell migration was much better than that of TD-(R). SAR studies demonstrated a pivotal role in the configuration of the residue of 2-hydroxy-4-methyl-pentenoic acid and some residues in the structure of TD-(R). In conclusion, TD-3, TD-4, and TD-6 may be potential agents for the treatment of cancer migration, and our modification methods will provide a reference for the development of anticancer drugs in the future.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3