Evaluation of Physical Properties in Carboxymethyl Chitosan Modified Glass Ionomer Cements and the Effect for Dentin Remineralization: SEM/EDX, Compressive Strength, and Ca/P Ratio

Author:

Putranto Aditya Wisnu1,Meidyawati Ratna1,Dwiseptyoga Senyan1,Zikrullah Dicky Yudha Andhika1

Affiliation:

1. Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia

Abstract

Abstract Objective The aim of this article was to evaluate the effects of modifying glass ionomer cement (GIC) with carboxymethyl chitosan (CMC) on surface morphology and remineralization outcomes by examining dentin morphology and calcium ion composition changes. Materials and Methods Thirty holes in a cylindrical acrylic mold were filled with three groups of restorative materials: GIC, GIC modified with CMC (GIC-CMC) 5%, and GIC-CMC10%. The surface morphology of each group's materials was observed using scanning electron microscopy (SEM). The compressive strength measurement was performed using a universal testing machine. The dentin remineralization process was performed by applying GIC, GIC-CMC5%, and GIC-CMC10% materials for 14 days on demineralized dentin cavities treated with 17% ethylenediamine tetraacetic acid (EDTA) for 7 days. A morphological evaluation was conducted using SEM. The calcium ion composition and calcium-to-phosphorous (Ca/P) ratio were examined using an energy-dispersive X-ray (EDX). Statistical Analysis The Kruskal–Wallis and post-hoc Mann–Whitney U tests were performed to compare all four groups of calcium ions (p < 0.05). Results The modification of GIC with CMC affected the morphological changes in the materials in the form of reduced porosity and increased fractures. A significant difference was found in compressive strength between the GIC-CMC modification materials of GIC-CMC5% and GIC-CMC10% and the GIC control group. The dentin tubule morphology and surface changes were observed after applying GIC, GIC-CMC5%, and GIC-CMC10% materials for 14 days, as evaluated by SEM. The EDX examination showed an increase in calcium ion content and hydroxyapatite formation (Ca/P ratio) after applying the GIC-CMC10% material. Conclusion The surface porosity of the GIC modification material with the addition of CMC tended to decrease. However, an increase in cracked surfaces that widened, along with the rise in CMC percentage, was found. This modification also reduced the compressive strength of the materials, with the lowest average yield at 10% CMC addition. Therefore, the modification of GIC with CMC affects changes in morphology, calcium ion composition, and Ca/P ratio in demineralized dentin.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3