Affiliation:
1. Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, and Center for Research and Medical Technology, St. John Paul II Hospital, Cracow, Poland
Abstract
AbstractCongenital and acquired fibrinogen disorders often have heterogeneous clinical phenotypes and are challenging from a laboratory perspective. Fibrinogen determination using the Clauss method remains the gold standard, while the reproducibility and significance of the thrombin time and the reptilase time are limited. Molecular testing for causative mutations in fibrinogen genes is now recommended to confirm the diagnosis of congenital fibrinogen disorders. Research assays are used to evaluate alterations to fibrin formation and properties of plasma and purified fibrinogen-derived clots, characterized by fiber thickness, the number of branches, and pore sizes. Fibrin clot permeability (permeation, porosity) using a hydrostatic pressure system represents the most commonly used method for evaluating fibrin network density. Reduced clot permeability, which denotes the reduced size of an average pore in the network, results in tighter fibrin networks, typically associated with impaired susceptibility to lysis, leading to a thrombotic tendency. Biophysical properties of fibrin clots are largely assessed using rheometry, with atomic force microscopy and nanorheology being increasingly used in disease states. Thromboelastography and thromboelastometry, a simple modification of rheometry, have been used, mainly in intensive care units, for more than 50 years. Given growing evidence for altered fibrin clot properties in diseases with elevated risk of venous and arterial thromboembolism and in some bleeding disorders, further work on standardization and validation of the assessment of fibrin clot characteristics is needed. This review summarizes the current methods used to evaluate fibrinogen abnormalities in both diagnostic and research laboratories.