Imaging the Unimaginable: Desorption Electrospray Ionization – Imaging Mass Spectrometry (DESI-IMS) in Natural Product Research

Author:

Parrot Delphine1,Papazian Stefano1,Foil Daniel1,Tasdemir Deniz12

Affiliation:

1. GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

2. Kiel University, Kiel, Germany

Abstract

AbstractImaging mass spectrometry (IMS) has recently established itself in the field of “spatial metabolomics.” Merging the sensitivity and fast screening of high-throughput mass spectrometry with spatial and temporal chemical information, IMS visualizes the production, location, and distribution of metabolites in intact biological models. Since metabolite profiling and morphological features are combined in single images, IMS offers an unmatched chemical detail on complex biological and microbiological systems. Thus, IMS-type “spatial metabolomics” emerges as a powerful and complementary approach to genomics, transcriptomics, and classical metabolomics studies. In this review, we summarize the current state-of-the-art IMS methods with a strong focus on desorption electrospray ionization (DESI)-IMS. DESI-IMS utilizes the original principle of electrospray ionization, but in this case solvent droplets are rastered and desorbed directly on the sample surface. The rapid and minimally destructive DESI-IMS chemical screening is achieved at ambient conditions and enables the accurate view of molecules in tissues at the µm-scale resolution. DESI-IMS analysis does not require complex sample preparation and allows repeated measurements on samples from different biological sources, including microorganisms, plants, and animals. Thanks to its easy workflow and versatility, DESI-IMS has successfully been applied to many different research fields, such as clinical analysis, cancer research, environmental sciences, microbiology, chemical ecology, and drug discovery. Herein we discuss the present applications of DESI-IMS in natural product research.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3