Blood Flow Restriction Alters Motor Unit Behavior During Resistance Exercise

Author:

Fatela Pedro12,Mendonca Goncalo V.32,Veloso António Prieto34,Avela Janne5,Mil-Homens Pedro32

Affiliation:

1. Sport Sciences, Universidade Europeia, Lisboa, Portugal

2. Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada Dafundo, Portugal.

3. CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002, Cruz Quebrada Dafundo, Portugal.

4. Biomechanics Laboratory, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1499-002 Cruz Quebrada Dafundo, Portugal.

5. Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland

Abstract

AbstractWe aimed to determine whether blood flow restriction (BFR) alters the characteristics of individual motor units during low-intensity (LI) exercise. Eight men (26.0±3.8 yrs) performed 5 sets of 15 knee extensions at 20% of one-repetition maximum (with and without BFR). Maximal isometric voluntary contractions (MVC) were performed before and after exercise to quantify force decrement. Submaximal isometric voluntary contractions were additionally performed for 18 s, matching trapezoidal target-force trajectories at 40% pre-MVC. EMG activity was recorded from the vastus lateralis muscle. Then, signals were decomposed to extract motor unit recruitment threshold, firing rates and action potential amplitudes (MUAP). Force decrement was only seen after LI BFR exercise (–20.5%; p<0.05). LI BFR exercise also induced greater decrements in the linear slope coefficient of the regression lines between motor unit recruitment threshold and firing rate (BFR: –165.1±120.4 vs. non-BFR: –44.4±33.1%, p<0.05). Finally, there was a notable shift towards higher values of firing rate and MUAP amplitude post-LI BFR exercise. Taken together, our data indicate that LI BFR exercise increases the activity of motor units with higher MUAP amplitude. They also indicate that motor units with similar MUAP amplitudes become activated at higher firing rates post-LI BFR exercise.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3