Quantitative Assessment of Ataxia in Multiple Sclerosis Patients using Spatiotemporal Parameters: A Relief-Based Machine Learning Analysis

Author:

Bilek Furkan1,Balgetir Ferhat2,Demir Caner Feyzi2,Alkan Gökhan3,Arslan-Tuncer Seda4

Affiliation:

1. Faculty of Health Sciences Department of Physiotherapy and Rehabilitation , Firat Universitesi, Elazig, Turkey

2. Department of Neurology , Firat University School of Medicine, Elazig, Turkey

3. Department of Physical Medicine and Rehabilitation, Firat University School of Medicine, Elazig, Turkey

4. Department of Software Engineering, Firat University Faculty of Engineering, Elazig, Turkey

Abstract

Abstract Background and Objective Multiple sclerosis (MS) is a chronic, progressive, and autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal injury. In patients with newly diagnosed MS (ndMS), ataxia can present either as mild or severe and can be difficult to diagnose in the absence of clinical disability. Such difficulties can be eliminated by using decision support systems supported by machine learning methods. The present study aimed to achieve early diagnosis of ataxia in ndMS patients by using machine learning methods with spatiotemporal parameters. Materials and Methods The prospective study included 32 ndMS patients with an Expanded Disability Status Scale (EDSS) score of≤2.0 and 32 healthy volunteers. A total of 14 parameters were elicited by using a Win-Track platform. The ndMS patients were differentiated from healthy individuals using multiple classifiers including Artificial Neural Network (ANN), Support Vector Machine (SVM), the k-nearest neighbors (K-NN) algorithm, and Decision Tree Learning (DTL). To improve the performance of the classification, a Relief-based feature selection algorithm was applied to select the subset that best represented the whole dataset. Performance evaluation was achieved based on several criteria such as Accuracy (ACC), Sensitivity (SN), Specificity (SP), and Precision (PREC). Results ANN had a higher classification performance compared to other classifiers, whereby it provided an accuracy, sensitivity, and specificity of 89, 87.8, 90.3% with the use of all parameters and provided the values of 93.7, 96.6%, and 91.1% with the use of parameters selected by the Relief algorithm, respectively. Significance To our knowledge, this is the first study of its kind in the literature to investigate the diagnosis of ataxia in ndMS patients by using machine learning methods with spatiotemporal parameters. The proposed method, i. e. Relief-based ANN method, successfully diagnosed ataxia by using a lower number of parameters compared to the numbers of parameters reported in clinical studies, thereby reducing the costs and increasing the performance of the diagnosis. The method also provided higher rates of accuracy, sensitivity, and specificity in the diagnosis of ataxia in ndMS patients compared to other methods. Taken together, these findings indicate that the proposed method could be helpful in the diagnosis of ataxia in minimally impaired ndMS patients and could be a pathfinder for future studies.

Publisher

Georg Thieme Verlag KG

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3