Biomechanical Effects of Stem Extension of Tibial Components for Medial Tibial Bone Defects in Total Knee Arthroplasty: A Finite Element Study

Author:

Park Kwan Kyu1,Kang Kyoung-Tak2ORCID,Kwon Hyuck Min1,Hong Hyoung-Taek2,Kim Inuk1,Cho Byung Woo1,Koh Yong-Gon3

Affiliation:

1. Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea

2. Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea

3. Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea

Abstract

AbstractThe aim of this study was to investigate the biomechanical effects of stem extension with a medial tibial bone defect in primary total knee arthroplasty (TKA) on load distribution and stress in the proximal tibia using finite element (FE) analysis.FE simulations were performed on the tibia bone to evaluate the stress and strain on the tibia bone and bone cement. This was done to investigate the stress shielding effect, stability of the tibia plate, and the biomechanical effects in TKA models with various medial defects and different stem length models.The results demonstrated that in the bone defect model, the longer the stem, the lower the average von Mises stress on the cortical and trabecular bones. In particular, as the bone defect increased, the average von Mises stress on cortical and trabecular bones increased. The average increase in stress according to the size of the bone defect was smaller in the long stem than in the short stem. The maximal principal strain on the trabecular bone occurred mainly at the contact point on the distal end of the stem of the tibial implant. When a short stem was applied, the maximal principal strain on the trabecular bone was approximately 8% and 20% smaller than when a long stem was applied or when no stem was applied, respectively.The findings suggest that a short stem extension of the tibial component could help achieve excellent biomechanical results when performing TKA with a medial tibial bone defect.

Publisher

Georg Thieme Verlag KG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3