Computed tomography-based radiomics machine learning models for differentiating enchondroma and atypical cartilaginous tumor in long bones

Author:

Hong Rui1,Li Qian1,Ma Jielin2,Lu Chunmiao1,Zhong Zhiwei1

Affiliation:

1. Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China

2. Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China

Abstract

AbstractTo explore the value of CT-based radiomics machine learning models for differentiating enchondroma from atypical cartilaginous tumor (ACT) in long bones and methods to improve model performance.59 enchondromas and 53 ACTs in long bones confirmed by pathology were collected retrospectively. The features were extracted from preoperative CT images of these patients, and least absolute shrinkage and selection operator (LASSO) regression was used for feature selection and dimensionality reduction. The selected features were used to construct classification models by thirteen machine learning algorithms. The data set was randomly divided into a training set and a test set at a proportion of 7:3 by ten-fold cross-validation to evaluate the performance of these models.A total of 1199 features were extracted, 9 features were selected, and 13 radiomics machine learning models were constructed. The area under the curve (AUC) of 11 models was more than 0.8, and that of 3 models was more than 0.9. The Extremely Randomized Trees model achieved the best performance (AUC = 0.9375 ± 0.0884), followed by the Adaptive Boosting model (AUC = 0.9188 ± 0.1010) and the Linear Discriminant Analysis model (AUC = 0.9062 ± 0.1459).CT-based radiomics machine learning models had great ability to distinguish enchondroma and ACT in long bones. By using filters to deeply mine high-order features in the original image and selecting appropriate machine learning algorithms, the performance of the model can be improved.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3