Affiliation:
1. Laboratorio de Química Orgánica y Biomolecular, Universidad Industrial de Santander
Abstract
Among the existing methods for the synthesis of bioactive and/or complex small molecules, organic transformations such as C–C and C–N bond formation have been significantly developed and exploited for the synthesis of diverse synthetic and natural fused aza-polycycles. The abundance and biological and physical activities of 1-phenethyl-tetrahydroisoquinolines, aporphines, homoaporphines, and β-carbolines have inspired many organic chemists to seek sustainable and efficient protocols for their preparation. However, these methodologies involve multiple steps and in most cases the key reaction step is based on the formation of new C–C and/or C–N bonds, and this is usually the critical step that lowers the yields and selectivity. This review is focused on the advances made in recent years regarding the synthesis of these selected natural fused aza-polycycles, overviewing the substrate scope, limitations, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions, concentrating on developments from 2010 to 2016.1 Introduction2 1-Phenethyl-tetrahydroisoquinolines; Dysoxylum Alkaloids3 Aporphines, Homoaporphines, and Semisynthetic Derivatives4 Harmala and Eudistomin Alkaloids and Their Biological Properties5 Metal-Catalyzed C–C Bond Formation6 Pd-Catalyzed C–C and C–N Bond Formation7 Metal-Catalyzed C–N Bond Formation8 [4+2] Cycloaddition in the Synthesis Of Aporphines9 Tandem C–N/C–C Bond Formation: The Pictet–Spengler Reaction10 Miscellaneous Methods11 Conclusions
Funder
Colombian Institute for Science and Research
Subject
Organic Chemistry,Catalysis
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献