Biomechanical Comparison of Five Posterior Cruciate Ligament Reconstruction Techniques

Author:

Milles Jeffrey1,Pfeiffer Ferris12,Stannard James12,Smith Patrick13,Kfuri Mauricio12,Cook James12,Nuelle Clayton12

Affiliation:

1. Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri

2. Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri

3. Columbia Orthopaedic Group, Columbia, Missouri

Abstract

AbstractNo surgical technique recreates native posterior cruciate ligament (PCL) biomechanics. We compared the biomechanics of five different PCL reconstruction techniques versus the native PCL. Cadaveric knees (n = 20) were randomly assigned to one of five reconstruction techniques: Single bundle all-inside arthroscopic inlay, single bundle all-inside suspensory fixation, single bundle arthroscopic-assisted open onlay (SB-ONL), double bundle arthroscopic-assisted open inlay (DB-INL), and double bundle all-inside suspensory fixation (DB-SUSP). Each specimen was potted and connected to a servo-hydraulic load frame for testing in three conditions: PCL intact, PCL deficient, and PCL reconstructed. Testing consisted of a posterior force up to 100 N at a rate of 1 N/s at four knee flexion angles: 10, 30, 60, and 90 degrees. Three material properties were measured under each condition: load to 5 mm displacement, maximal displacement, and stiffness. Data were normalized to the native PCL, compared across techniques, compared with all PCL-intact knees and to all PCL-deficient knees using one-way analysis of variance. For load to 5 mm displacement, intact knees required significantly (p < 0.03) more load at 30 degrees of flexion than all reconstructions except the DB-SUSP. At 60 degrees of flexion, intact required significantly (p < 0.01) more load than all others except the SB-ONL. At 90 degrees, intact, SB-ONL, DB-INL, and DB-SUSP required significantly more load (p < 0.05). Maximal displacement testing showed the intact to have significantly (p < 0.02) less laxity than all others except the DB-INL and DB-SUSP at 60 degrees. At 90 degrees the intact showed significantly (p < 0.01) less laxity than all others except the DB-SUSP. The intact was significantly stiffer than all others at 30 degrees (p < 0.03) and 60 degrees (p < 0.01). Finally, the intact was significantly (p < 0.05) stiffer than all others except the DB-SUSP at 90 degrees. No technique matched the exact properties of the native PCL, but the double bundle reconstructions more closely recreated the native biomechanics immediately after implantation, with the DB-SUSP coming closest to the native ligament. This study contributes new data for consideration in PCL reconstruction technique choice.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3