Cluster Preface: Asymmetric Brønsted Base Catalysis

Author:

Tan Choon-Hong1,List Benjamin2

Affiliation:

1. Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences,

2. Max-Planck-Institut für Kohlenforschung

Abstract

Choon-Hong Tan is a professor at the Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore. He received his BSc (Hons) First Class from the National University of Singapore (NUS) and his Phd from the University of Cambridge. He underwent postdoctoral training at the Department of Chemistry and Chemical Biology, Harvard University and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School. He began his independent career at the Department of Chemistry, National University of Singapore in 2003. Choon Hong has focused on the development of organocatalytic Brønsted base reactions that can be catalyzed with chiral guanidines. He has also demonstrated that pentanidiums (conjugated guanidiniums) are efficient phase-transfer catalysts. Recently, he described the use of chiral organic cations such as bisguanidiniums to modulate and activate anionic metallic salts. Benjamin List has been a director at the Max-Planck-Institut für Kohlenforschung since 2005. He obtained his Ph.D. in 1997 (Frankfurt). From 1997 until 1998 he conducted postdoctoral research at The Scripps Research Institute in La Jolla (USA) and became an assistant professor there in January 1999. In 2003 he joined the Max-Planck-Institut für Kohlenforschung. He has been an honorary professor at the University of Cologne since 2004. Ben List’s research focuses on organic synthesis and catalysis. He has contributed fundamental concepts to chemical synthesis including aminocatalysis, enamine catalysis, and asymmetric-counteranion-directed catalysis (ACDC). His latest work deals with chiral counteranions in asymmetric catalysis. This remarkably general strategy for asymmetric synthesis has recently found widespread use in organocatalysis, transition-metal catalysis, and Lewis acid catalysis.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3