Affiliation:
1. Department of Neurosurgery, University Hospital Wuerzburg, Wuerzburg, Germany
Abstract
Background In experimental models of neuronal damage, therapeutic hypothermia proved to be a powerful neuroprotective method. In clinical studies of traumatic brain injury (TBI), this very distinct effect was not reproducible. Several meta-analyses draw different conclusions about whether therapeutic hypothermia can improve outcome after TBI. Adverse side effects of systemic hypothermia, such as severe pneumonia, have been held responsible by some authors to counteract the neuroprotective effect. Selective brain cooling (SBC) attempts to take advantage of the protective effects of therapeutic hypothermia without the adverse side effects of systemic hypothermia.
Methods Three different methods of SBC were applied in a patient who had severe TBI with recurrent increases of intracranial pressure (ICP) refractory to conventional forms of treatment: (1) external cooling of the scalp and neck using ice packs prior to hemicraniectomy, (2) external cooling of the craniectomy defect using ice packs after hemicraniectomy, and (3) cooling by epidural irrigation with cold Ringer solution after hemicraniectomy.
Results External scalp cooling before hemicraniectomy, external cooling of the craniectomy defect, and epidural irrigation with cold fluid resulted in temperature differences (brain temperature to body temperature) of − 0.2°, − 0.7°, and − 3.6°C, respectively. ICP declined with decreasing brain temperature.
Conclusion Previous external cooling attempts for SBC faced the problem that brain temperature could not be lowered without a simultaneous decrease of systemic temperature. After hemicraniectomy, epidural irrigation with cold fluid may be a simple and effective way to lower ICP and apply one of the most powerful methods of cerebroprotection after severe TBI.
Subject
Neurology (clinical),Surgery
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献