Transition-Metal-Free Reactions Between Boronic Acids and N-Sulfonylhydrazones or Diazo Compounds: Reductive Coupling Processes and Beyond

Author:

Valdés CarlosORCID,Paraja Miguel,Plaza Manuel

Abstract

The metal-free reaction between diazo compounds and boronic acids has been established in recent years as a powerful C(sp3)–C bond-forming reaction. This account covers the recent advances in this area. First, the various synthetic applications of reactions with N-sulfonylhydrazones as a convenient source of diazo compounds is discussed. These transformations can be regarded as reductive couplings of carbonyl compounds. Also covered is the incorporation of other mild sources of diazo compounds in these reactions: diazotization of amines and oxidation of hydrazones. Finally, the development of sequential and cascade processes is presented.1 Introduction2 Early Work: Reactions Between Alkylboranes and Diazo Compounds or N-Sulfonylhydrazones2.1 Reactions Between Alkylboranes and Diazo Compounds2.2 Reactions Between Alkylboranes and N-Sulfonylhydrazones3 Reactions of N-Sulfonylhydrazones and Diazo Compounds with Aryl and Alkylboronic Acids3.1 Reactions of Arylboroxines with Diazo Compounds3.2 Reductive Couplings of N-Sulfonylhydrazones with Aryl- and Alkylboronic Acids3.3 Three-Component Reactions Between α-Halotosylhydrazones, Boronic Acids and Indoles4 Reactions of N-Tosylhydrazones with Alkenylboronic Acids5 Synthesis of Allenes by Reactions with Alkynyl N-Nosylhydrazones6 Reactions with Diazo Compounds Generated by Diazotization of Primary Amines7 Reactions with Diazo Compounds Generated by Oxidation of ­Hydrazones8 Reactions with Trimethylsilyldiazomethane9 Cascade Cyclization Reactions with γ- and δ-Cyano-N-tosylhydrazones10 Summary and Outlook

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3