The Petroleum Ether Extract from Hypericum perforatum Root Cultures Exhibits Potent Antiproliferative Activity in Human Keratinocytes and Fibroblasts

Author:

Gaid Mariam12,Füller Jendrik32,Müller-Goymann Christel32

Affiliation:

1. Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Germany

2. Zentrum für Pharmaverfahrenstechnik PVZ, Technische Universität Braunschweig, Germany

3. Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Germany

Abstract

AbstractThe hyperforin content of Hypericum perforatum herb was repeatedly reported to be responsible for a multitude of pharmacological activities. Our recent report about the hyperforin accumulation in in vitro root cultures of H. perforatum provides an alternative perspective to achieve constant product quality and to serve the rapidly growing market. In this study, the antiproliferative effect of a petroleum ether extract from the in vitro root cultures was investigated. When normalized to 1 µM hyperforin content, the extract reduced the viability of human keratinocytes (HaCaT) and human dermal fibroblast monolayers to 33 and 36%, respectively, after 72 h of incubation. A cytotoxicity assay and live-dead cell staining confirmed that the extract lacked a cytotoxic effect and that the reduction in cell viability was mainly due to the antiproliferative activity. Application of the 1 µM hyperforin-normalized extract to a 3D artificial skin construct significantly reduced the proliferation of HaCaT in the presence of fibroblasts. This effect was proved by the reduction in thickness of the epidermal construct from 100 µm (control) to 17 µm (treated). Notably, 1 µM pure hyperforin lacked effectiveness in both monolayer cultures and 3D artificial skin constructs. Nor were fractions of the extract containing colupulone and xanthones active. The combination of these constituents also failed to reassemble the antiproliferative activity, which indicates a synergistic role of yet unidentified components present in the extract. Our findings may introduce H. perforatum root cultures as a novel lead system for the treatment of hypertrophic scars.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3