The Use of Artificial Intelligence in the Evaluation of Knee Pathology

Author:

Garwood Elisabeth R.1,Tai Ryan1,Joshi Ganesh1,Watts V George J.1

Affiliation:

1. Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School, Worcester, Massachusetts

Abstract

AbstractArtificial intelligence (AI) holds the potential to revolutionize the field of radiology by increasing the efficiency and accuracy of both interpretive and noninterpretive tasks. We have only just begun to explore AI applications in the diagnostic evaluation of knee pathology. Experimental algorithms have already been developed that can assess the severity of knee osteoarthritis from radiographs, detect and classify cartilage lesions, meniscal tears, and ligament tears on magnetic resonance imaging, provide automatic quantitative assessment of tendon healing, detect fractures on radiographs, and predict those at highest risk for recurrent bone tumors. This article reviews and summarizes the most current literature.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,Orthopedics and Sports Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model;Global Spine Journal;2024-08-12

2. Comparative evaluation of multiparametric lumbar MRI radiomic models for detecting osteoporosis;BMC Musculoskeletal Disorders;2024-02-29

3. Quantifying Brain Connectivity During Restricted Knee Movement;Lecture Notes in Computational Vision and Biomechanics;2024

4. Diagnostic and therapeutic device for knee injury;i-manager’s Journal on Instrumentation and Control Engineering;2024

5. An Attention-Based Deep Learning Approach to Knee Injury Classification from MRI Images;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3