CircRNA SCAR Improves High-Glucose-Induced Mitochondrial Dysfunction and Permeability Damage in Retinal Microvascular Endothelial Cells

Author:

Wu Rong1,Huang Sheng2,Xie Jin-feng1,Wen Nian-lian2,Wen Min3,Zhong Su-e2

Affiliation:

1. Jishou University Medical College, Jishou, China

2. Department of Ophthalmology, TongRen Municipal People’s Hospital, Tongren, China

3. Zunyi Medical University, Zunyi, China

Abstract

AbstractThis study was designed to assess the role and mechanism of circRNA SCAR in human retinal microvascular endothelial cells (hRMVECs) treated with high glucose. Quantitative real-time polymerase chain reaction (qRT-PCR) and cell counting kit 8 (CCK-8) were used to detect the effects of different concentrations of glucose on circRNA SCAR expression and cell proliferation in hRMVECs. Cell viability, levels of oxygen species (ROS), malondialdehyde (MDA) and adenosine triphosphate (ATP), as well as activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the transfected hRMVECs in each group were detected using CCK-8 and their corresponding detection kits. Changes in mtDNA copy number in high-glucose-induced hRMVECs were observed by qRT-PCR. Additionally, western blot was applied to detect effect of overexpressing circRNA SCAR on the expression levels of mitochondrial function-related proteins (Drp1 and Fis1) and cell permeability-related proteins (claudin-5, occludin and ZO-1) in hRMVECs under high-glucose concentration. According to experimental results, high glucose significantly downregulated circRNA SCAR expression and inhibited cell proliferation in hRMVECs. Instead, overexpression of this circRNA SCAR promoted cell proliferation, reduced levels of ROS, MDA and ATP, and increased SOD and CAT activities in hRMVECs under high-glucose concentration. Also, circRNA SCAR overexpression reversed the high-glucose-induced decrease in mtDNA copy number as well as, high-glucose-induced upregulation of Drp1 and Fis1 protein expression and downregulation of claudin-5, occludin and ZO-1 protein expression in hRMVECs. In summary, circRNA SCAR promotes the proliferation of hRMVECs under high-glucose concentration, alleviates oxidative stress induced by high glucose, and improves mitochondrial function and permeability damage.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3