Increased Oral Bioavailability of Piperine from an Optimized Piper nigrum Nanosuspension

Author:

Zafar Fatiqa1,Jahan Nazish1,Bhatti Haq1,

Affiliation:

1. Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Abstract

AbstractThe aim of the present study was to enhance the pharmaceutical potential and oral bioavailability of piperine, which is the bioactive constituent of Piper nigrum, using the nanosuspension approach. Nanoprecipitation, which is a simple and reproducible process, was used for nanosuspension formulation. To prepare a pharmaceutical-grade nanosuspension with the required particle size, important formulation parameters (amount of plant extract, concentration of stabilizer, and antisolvent-to-solvent ratio) were optimized using the central composite design of response surface methodology. The optimized nanosuspension was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and in vitro dissolution testing as well as by measuring the zeta potential. In vivo pharmacokinetic studies were conducted to determine the bioavailability of the prepared nanosuspension. Results of the optimization study indicated that 0.13% plant extract, 0.25% stabilizer, and an antisolvent-to-solvent ratio of 10.0 were the best parameters to obtain a homogeneous nanosuspension with the required particle size. The optimized nanosuspension demonstrated a mean particle size, polydispersity index, and zeta potential of 172.5 nm, 0.241, and − 16.6 mV, respectively. The results of the characterization studies illustrated that the nanosuspension was in the nanometer size range and had good surface morphology. The optimized nanosuspension showed a better dissolution rate and a 3.65-fold higher oral bioavailability for the P. nigrum nanosuspension than its coarse suspension. The present outcomes clearly demonstrated that to obtain an effective therapeutic potential, nanoformulation of medicinal plants is a better alternative than conventional dosage forms.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3