Vinpocetine Effect on the Juncture of Diabetes and Aging: An in-vitro study

Author:

Moini-Nodeh Shermineh1,Rahimifard Mahban1,Baeeri Maryam1,Hodjat Mahshid12,Haghi-Aminjan Hamed34,Abdollahi Mohammad1

Affiliation:

1. Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

2. Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

3. Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran

4. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran

Abstract

Abstract Background The rapid-growing population of diabetic patients and the elderly are among the direst challenges that the science of medicine is facing today. Targeting these two challenges can shed light on new means to control and ideally reverse this trend. In this experiment, Vinpocetine’s effect on aged pancreatic beta-cell functions in correlation with oxidative stress was studied. Methods Islet cells were isolated from the pancreas of aged rats and exposed to Vinpocetine, dissolved in acetone and RPMI, for 48 h. Then, senescence-associated molecular parameters, including P16 and P38 gene expressions and β-galactosidase activity, were investigated along with diabetic and inflammation markers. Results Experimental results showed that Vinpocetine could significantly increase aged islets insulin secretion and also make a meaningful reduction in oxidative stress markers. This drug can also decrease expression levels of P16 and P38, the primary genes responsible for the aging pathway. TNF-α, IL-6, and NF-κB expressions were also reduced noticeably after treatment with Vinpocetine. Conclusion The current study showed that Vinpocetine, a derivative of the secondary plant metabolite called Vincamine, could break this vicious cycle of oxidative stress and aging by reducing oxidative stress and inflammation, thus inhibiting cellular aging.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3