Effect of Spectral Shaping and Content on Loudness Discomfort

Author:

Bentler Ruth A.1,Nelson John A.2

Affiliation:

1. Department of Speech Pathology and Audiology, The University of Iowa, Iowa City, Iowa

2. Widex Office of Research in Clinical Amplification, Long Island City, New York

Abstract

AbstractThe purpose of this investigation was to study the impact of spectral shape and content on thresholds of discomfort (TD) for listeners with normal hearing and listeners with hearing loss. Secondary to that purpose was to quantify binaural summation at high intensities across complex stimulus conditions for both groups of listeners. Forty subjects (20 with normal hearing, 20 with hearing loss) participated. Complex acoustic stimuli (multitone and continuous discourse) were filtered to have four spectral shapes: (1) flat spectrum, (2) long-term average speech spectrum, (3) reverse long-term average speech spectrum, and (4) theTD contour derived for each subject from pure-tone TD obtained with eight pure tones from 250 to 4000 Hz. The results suggest that (1) TD for complex stimuli are lower for subjects with hearing loss compared with those with normal hearing, suggesting increased loudness summation with this population; (2) binaural summation of approximately 6 dB (independent of stimulus type, filter shape, or spectral content), indicating that a correction of similar magnitude for bilateral hearing aid fittings is appropriate; and (3) TD obtained at 750, 1500, and 3000 Hz accounted for approximately 60 percent of the variance in the complex TD measures, suggesting that TD at these frequencies be used to set the output obtained from a hearing aid with a 90–dB pure-tone sweep as the input stimulus. Abbreviations: ANOVA = analysis of variance, FIR = finite-impulse response, FS = flat spectrum, LTASS = long-term average speech spectrum, OSPL90 = output obtained from a hearing aid with a 90–dB pure-tone sweep as the input stimulus, R-LTASS = reverse long-term average speech spectrum, TD = threshold(s) of discomfort, TD contour = spectrum derived from TDs obtained with eight pure tones from 250 to 4000 Hz

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3