Neurophysiologic Mechanisms of Tinnitus

Author:

Kaltenbach James A.1

Affiliation:

1. Department of Otolaryngology—Head and Neck Surgery, Wayne State University, Detroit, Michigan

Abstract

AbstractResearch over the past decade has provided new insights into the neural mechanisms likely to produce the false percepts of sound associated with tinnitus. These insights have emerged mainly as a result of electrophysiologic studies, examining changes in brain activity, and behavioral studies, examining changes in perception, in animals that have been treated with well-known tinnitus inducers such as salicylates, quinine, and intense sound. The available evidence, based on electrophysiologic studies, suggests that tinnitus is associated with disturbances in spontaneous neural activity in the auditory system. These abnormalities include increases in spontaneous activity (hyperactivity), changes in the timing of neural discharges (i.e., the temporal firing properties of neurons), and an increase in bursting activity of neurons. Parallel studies using behavioral testing methods have demonstrated that agents, which produce these neural changes, also cause tinnitus in animals. This article reviews the literature concerned with both behavioral evidence for tinnitus in animal models and the associated changes that occur at peripheral and central levels of the auditory system. Abbreviations: Al = primary auditory cortex, All = secondary auditory cortex, AFF = anterior auditory field, CF = characteristic frequency, C02 = carbon dioxide, DCN = dorsal cochlear nucleus, EEG = electroencephalogram, FMRI = functional magnetic resonance imaging, IC = inferior colliculus, OAEs = otoacoustic emissions, PET = positron emission tomography, SA = spontaneous activity, SOAEs = spontaneous otoacoustic emissions

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3