Inborn Errors of Ketogenesis: Novel Variants, Clinical Presentation, and Follow-Up in a Series of Four Patients

Author:

Sait Haseena1ORCID,Srivastava Somya1,Kumar Somesh2ORCID,Varughese Bijo2,Pandey Manmohan1,Venkatramaiah Manjunath3,Chaudhary Parul1,Moirangthem Amita1ORCID,Mandal Kausik1ORCID,Kapoor Seema2ORCID

Affiliation:

1. Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

2. Division of Genetics and Metabolism, Department of Pediatrics, Lok Nayak Hospital, and Maulana Azad Medical College, New Delhi, India

3. MedgenomeLabs Ltd., Bangalore, Karnataka, India

Abstract

AbstractInborn errors of ketogenesis are rare disorders that result in acute and fulminant decompensation during lipolytic stress, particularly in infants and children. These include mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (HMGCS) deficiency and HMG-CoA lyase (HMGCL) deficiency. In this series, we describe the clinical, biochemical, and molecular profiles of four patients along with dietary interventions and their outcomes on a long-term follow-up. Two patients each of HMGCS and HMGCL deficiency were evaluated with clinical history, biochemical investigations, including tandem mass spectrometry (TMS) and urine gas chromatography-mass spectrometry (GCMS). Molecular analysis was performed by whole-exome sequencing, as well as exon array validated by long-range polymerase chain reaction. All individuals were diagnosed with acute metabolic decompensation in the early infancy period except one with HMGCL deficiency who had the first presentation at 5 years of age. Central nervous system manifestations, severe metabolic acidosis, hyperammonemia, hypoglycemia with a normal lactate, and absence of urinary ketones were observed in all the affected individuals. The disorder was life-threatening in three individuals and one succumbed to the illness. TMS was nonspecific and urine GCMS revealed dicarboxylic aciduria in HMGCS deficiency. Both the patients with HMGCL deficiency demonstrated elevated 3 hydroxyisovaleryl carnitine levels in TMS and metabolites of leucine degradation in urine GCMS. We identified five novel variants that included a large deletion involving exon 2 in HMGCL gene. There was no evidence of long-term neurological sequelae in the living individuals. Diet with moderation of fat intake was followed in two individuals with HMGCS deficiency. Low leucine and protein diet with moderation of fat intake was followed in the individual with HMGCL deficiency. All affected individuals are thriving well with no further major metabolic decompensation.

Publisher

Georg Thieme Verlag KG

Subject

Genetics (clinical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3