Smart Hydrogel Reactor of Poly(N-isopropylacrylamide)/Polyethylene Glycol Interpenetrating Polymer Networks for Oxidative Coupling of 2-Naphthol

Author:

Habaue Shigeki,Chen Minghao,Watanabe Takumi

Abstract

AbstractHydrogels with an interpenetrating polymer network (IPN) structure composed of poly(N-isopropylacrylamide) (poly-NIPAM) gel and a gel containing polyethylene glycol (PEG) chains were synthesized. They showed a typical temperature-responsive volume change in water owing to the constructed poly-NIPAM gel component. Oxidative coupling of 2-naphthol with IPN cryogels and a conventional catalyst, the CuCl2 complex of N,N,N′,N′-tetramethylenediamine, was conducted in water under an O2 atmosphere; the IPN gel prepared from PEG with a larger molecular weight of 11000 afforded a product with a good yield of 73% (91% conv.) during the reaction in basic media. The hydrogel effectively promoted the reaction but hardly produced any product without the catalyst, acting as a reactor vessel in the water. Owing to the low durability of the PEG gel component for hydrolysis, a limitation was also suggested during experiments on the recyclability of the hydrogel.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3