New Evidence for Regulatory Role of Trigeminal Ganglion on the Intraocular Pressure Following Subarachnoid Hemorrhage

Author:

Findik Huseyin1,Kanat Ayhan2ORCID,Aydin Mehmet Dumlu3,Guvercin Ali Riza4ORCID,Ozmen Sevilay4

Affiliation:

1. Department of Ophthalmology, Recep Tayyip Erdogan University, Medical Faculty, Rize, Turkey

2. Department of Neurosurgery, Recep Tayyip Erdogan University, Medical Faculty, Rize, Turkey

3. Department of Neurosurgery, Medical Faculty of Ataturk University, Erzurum, Turkey

4. Department of Neurosurgery, Karadeniz Technical University, Medical Faculty, Trabzon, Turkey

Abstract

Abstract Background Increased intraocular pressure (IOP) likely secondary to an activated oculo-trigeminal reflex network is an important issue following subarachnoid hemorrhage (SAH). The relationship between the IOP and trigeminal ganglion (TGG) following experimental SAH was investigated in this study. Methods Twenty-three rabbits were used in this study. Five rabbits (n = 5) were used as the control group, another 5 as the sham group (n = 5), and the remaining 13 (n = 13) as the study group. The study group was further divided into two groups of animals with mild (n = 6) and severe (n = 7) TGG degeneration. The IOP values were recorded. After 2 weeks, the animals were decapitated. The mean degenerated neuron density of TGGs was estimated by stereological methods and analyzed statistically. Results The average IOP values were 11.85, 14.12, and 21.45 mm Hg in the control (n = 5), sham (n = 5), and study (n = 13) groups, respectively. The mean degenerated neuron density was 34, 237, and 3,165 mm3 in the control, sham, and study groups, respectively. Conclusion According to the findings of this study, the experimental SAH leads to changes in IOP by affecting the TGG. By predicting and preventing IOP elevation in the setting of SAH, our findings will shed light on secondary sequelae such as glaucoma and irreversible blindness.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3