Automated Detection of Poor-Quality Scintigraphic Images Using Machine Learning

Author:

Pandey Anil K.1,Sharma Akshima2,Sharma Param D.3,Bal Chandra S.1,Kumar Rakesh1

Affiliation:

1. Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India

2. Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India

3. Department of Computer Science, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India

Abstract

Abstract Objective In the present study, we have used machine learning algorithm to accomplish the task of automated detection of poor-quality scintigraphic images. We have validated the accuracy of our machine learning algorithm on 99mTc-methyl diphosphonate (99mTc-MDP) bone scan images. Materials and Methods Ninety-nine patients underwent 99mTC-MDP bone scan acquisition twice at two different acquisition speeds, one at low speed and another at double the speed of the first scan, with patient lying in the same position on the scan table. The low-speed acquisition resulted in good-quality images and the high-speed acquisition resulted in poor-quality images. The principal component analysis (PCA) of all the images was performed and the first 32 principal components (PCs) were retained as feature vectors of the image. These 32 feature vectors of each image were used for the classification of images into poor or good quality using machine learning algorithm (multivariate adaptive regression splines [MARS]). The data were split into two sets, that is, training set and test set in the ratio of 60:40. Hyperparameter tuning of the model was done in which five-fold cross-validation was performed. Receiver operator characteristic (ROC) analysis was used to select the optimal model using the largest value of area under the ROC curve. Sensitivity, specificity, and accuracy for the classification of poor- and good-quality images were taken as metrics for the performance of the algorithm. Result Accuracy, sensitivity, and specificity of the model in classifying poor-quality and good-quality images were 93.22, 93.22, and 93.22%, respectively, for the training dataset and 86.88, 80, and 93.7%, respectively, for the test dataset. Conclusion Machine learning algorithms can be used to classify poor- and good-quality images with good accuracy (86.88%) using 32 PCs as the feature vector and MARS as the classification model.

Publisher

Georg Thieme Verlag KG

Reference21 articles.

1. Machine learning in nuclear medicine: part 1—introduction;C F Uribe;J Nucl Med,2019

2. Machine learning in nuclear medicine: part 2-neural networks and clinical aspects;K Zukotynski;J Nucl Med,2021

3. Principal Component Analysis

4. Multivariate adaptive regression splines;J H Friedman;Ann Stat,1991

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3