Characterization of Polyvinyl Alcohol–Collagen–Hydroxyapatite Composite Membrane from Lates calcarifer Scales for Guided Tissue and Bone Regeneration

Author:

Ariesanti Yessy1ORCID,Octavianus Putri Graesya Melani2ORCID,Handayani Annisa Tri2ORCID,Abbas Basril3ORCID

Affiliation:

1. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia

2. Undergraduate Program, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia

3. National Research and Innovation Agency (BRIN), Jakarta, Indonesia

Abstract

Abstract Objective To determine the chemical structure, tensile strength, porosity, and degradability of polyvinyl alcohol (PVA)–collagen–hydroxyapatite (HA) composite membranes for guided tissue and bone regeneration. Materials and Methods The PVA–collagen–HA composite membrane was divided into three groups: the group without irradiation, the group with 15 kGy irradiation, and 25 kGy irradiation. Each group was tested for chemical structure with Fourier-transform infrared (FT-IR) at a wavelength of 400 to 4,000 cm−1. Tensile strength test was tested in dry and wet conditions with the standard method of American Standard Testing Mechanical (ASTM) D638, and porosity using scanning electron microscope and analyzed using ImageJ software. Degradability test immersed in a solution of phosphate-buffered saline. Data were analyzed using analysis of variance (ANOVA) and Tukey's test. Results FT-IR test before and after storage for 30 days on three media showed a stable chemical structure with the same functional groups. ANOVA analysis showed a significant difference (p < 0.05) in the dry condition (p = 0.006), Tukey's test showed a significant difference in the 15 kGy and 25 kGy irradiated groups (p = 0.005), but the groups without irradiation had no significant difference with the 15 kGy (p = 0.285) and 25 kGy (p = 0.079) irradiation groups. In wet conditions, there was no significant difference (p > 0.05) in each group (p = 373). The size of the porosity in the group without irradiation, 15 kGy irradiation, and 25 kGy irradiation showed a size of 4.65, 6.51, and 8.08 m, respectively. The degradability test showed a decrease in weight in each group, with the total weight of the membrane being completely degraded from the most degraded to the least: the groups without irradiation, 15 kGy irradiation, and 25 kGy irradiation. The ANOVA test on the degradability test shows significant (p < 0.05) in the PVA–collagen–HA composite membrane group over time intervals (p = 0.000). Tukey's post hoc test showed a significant difference (p < 0.05) after 1 week between the groups without irradiation with 15 kGy (p = 0.023). Conclusion PVA–collagen–HA composite membrane has a stable chemical structure, optimal tensile strength, porosity, and ideal degradability as guided bone regeneration and guided tissue regeneration.

Publisher

Georg Thieme Verlag KG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3