Physical Principles of Elastography: A Primer for Radiologists

Author:

Patra Sayantan1,Grover Shabnam Bhandari12

Affiliation:

1. Department of Radiology and Imaging, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India

2. Department of Radiology and Imaging, Sharda School of Medical Sciences and Research, Sharda University, Greater Noida, Delhi NCR, India (current)

Abstract

AbstractElastography is the noninvasive method of qualitative and quantitative evaluation of strain and elastic modulus distribution in soft tissues. In simpler terms, elastography is the science of measuring tissue stiffness, the deviation of which correlates with pathology of the tissue/organs being evaluated. Whereas, elasticity, refers to the property of solid matter to return to their original shape and size after removal of the deforming forces. In all forms of elastography, irrespective of the types of deforming forces or moduli, the deformation of tissue occurs in the form of shear deformation. The velocity of shear waves in the deformed tissue depends on its density and on the shear modulus. The direction of propagation of shear wave is perpendicular to the inciting mechanical or acoustic wave. The shear wave is then subsequently tracked using multiple tracking pulses, which measures tissue displacement in response to the passing shear wave. The calculated speed of the shear wave is then converted to conventional Young's modulus for the purpose of computing the tissue stiffness.The currently used elastography techniques are static or quasi-static elastography and dynamic elastography. Strain elastography (a form of static or quasi-static elastography) is based on the principle of acquisition of radio-frequency (RF) signals before and after the application of a deforming force in the form of slight compression of tissue by a transducer. RF signals are compared between the pre-compression image data set and the post-compression image data set and correlated between the two data sets.Dynamic elastography may be either ultrasound (US) based or magnetic resonance (MR) based. The types of dynamic US elastography are: acoustic radiation force impulse imaging (ARFI), transient elastography (TE), point shear wave elastography (pSWE), and shear wave elastography (SWE). ARFI uses a standard transducer to produce and propagate rapid bursts of long focused ultrasound pulses, also called as “push pulses” which cause tissue deformity, the propagation of which is tracked using radio-frequency echo tracking. In TE, a probe mounted on a vibrator is used to produce a small thump by piston like motion of transducer. The shear wave which arises from the edges of the transducer is tracked using high pulse repetition frequency tissue Doppler and computed using M-mode for display of quantitative parameters. Point shear wave, also known as quantitative ARFI, uses shear waves generated using transient tissue displacement caused by ARFI and are subsequently subjected to tracking by Doppler. Shear wave elastography is based on the principles of imaging shear wave speed. An acoustic radiation force impulse is transmitted along the acoustic axis to produce tissue displacement and deformation at points of acoustic axis. The generated shear wave is imaged using RF echo tracking over a grid of points, which is translated into a real time image. MR elastography is a dynamic technique and the basic principles of MR elastography are the same as other forms of dynamic elastography. MR elastography has limited utility in iron-overload states and in addition, due to the large amount of time required for acquisition, the technique is not suitable for unstable patients.This review presents a simplified summary of the principles of elastography along with definition of the terms and the types of elastography which are currently available to radiologists for clinical application and concludes with a brief on the newer developments for the future.

Publisher

Georg Thieme Verlag KG

Reference14 articles.

1. Elastography: A quantitative method for imaging the elasticity of biological tissues;J Ophir;Ultrasonic Imaging,1991

2. Elastography: history, principles, and technique comparison;B S Garra;Abdom Imaging,2015

3. General review of magnetic resonance elastography;G Low;World J Radiol,2016

4. FibroSca and transient elastograhy;W W Kemp;Australian Family Physician,2013

5. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography;J Bamber;Ultraschall in der Medizin-European Journal of Ultrasound,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastography: Technical Aspects;Elastography of the Musculoskeletal System;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3