Auditory Pathway Maturation in Full-term Small for Gestational Age Children: A Systematic Review with Meta-analysis

Author:

Santos Dourivaldo Silva1ORCID,Fernandes Luciene da Cruz2ORCID,Rissatto-Lago Mara Renata3ORCID,Costa Ana Caline Nóbrega2ORCID

Affiliation:

1. Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil

2. Multidisciplinary Institute of Rehabilitation in Health, Federal University of Bahia, Salvador, Bahia, Brazil

3. Life Sciences Department, State University of Bahia, Salvador, Bahia, Brazil

Abstract

Abstract Introduction Factors of intrauterine growth restriction have been responsible for the births of full-term babies small for their gestational age (SGA). Scientific evidence points that this restriction can cause changes in the neural maturation process. Objectives To analyze the absolute latencies and interpeak intervals of brainstem auditory evoked potential waves in full-term and SGA children to investigate whether there are changes of neural maturation in this population. Data Synthesis The search for articles that reported the assessment of brainstem auditory evoked potential in SGA newborns compared with a control, appropriate for their gestational age, both born full-term, for the entire period available in the database research until October 31, 2021 was performed based on the MEDLINE/PubMed Central and on the Latin America and the Caribbean Health Sciences Literature and Virtual Health Library electronic databases. A total of 311 studies were found in the database research. Out of this total, 10 studies were included in the review, 5 of which were eligible for the meta-analysis, involving a total of 473 participants of both genders, with 193 participants belonging to the study group and 280 to the control group. Differences between the groups were only observed in the absolute latency of wave V (95% confidence interval [CI]: 0.02–0.15; p < 0.01). Conclusion The SGA condition is responsible for the appearance of brainstem neural conduction dysfunction measured by the brainstem auditory evoked potentials, probably by the maturation process of the auditory pathway of this population.

Publisher

Georg Thieme Verlag KG

Subject

Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3