CD24+ MDSC-DCs Induced by CCL5-Deficiency Showed Improved Antitumor Activity as Tumor Vaccines

Author:

Huang Lei12,Ding Zequn12,Zhang Yan12

Affiliation:

1. State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China

2. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China

Abstract

Abstract Background Dendritic cell (DC) tumor vaccine has been extensively utilized in preclinical and clinical studies; however, this technique has encountered many difficulties, particularly in late-stage tumor patients. For those, ex vivo-induced DCs are actuallymyeloid-derived suppressive cells-derived DCs (MDSC-DCs). MDSCs with immunosuppressive activity, but not monocytes, became the major DC precursor. Thus, how to enhance antitumor activity of MDSC-DCs is urgent need to address. Methods We utilized 4T1 and MC38 tumor-bearing both wildtype and CC chemokine ligand 5−/− (CCL5−/−) mice as animal models. MDSC-DCs were induced from splenocytes of these mice by granulocyte macrophage–colony stimulating factor/interleukin-4 with or without all-trans-retinoic acid (ATRA) in vitro for 7 days, then incubated with tumor-cell-lysis to treat mouse models for total three doses. For human MDSC-DCs, peripheral bloods from colorectal cancer patients were induced in vitro as murine cells with or without T- lymphocytes depletion to get rid of CCL5. Results Flow cytometry analysis showed that MDSCs from CCL5 −/− mice could be induced into a new type of CD24+ MDSC-DCs in the presence of ATRA, which had more antitumor activity than control. Antibody blocking and adoptive transfer experiments demonstrated that downregulation of regulatory T cells (Tregs) mediated the inhibition of CD24+ MDSC-DCs on tumor growth. Mechanically, CD24+ MDSC-DCs inhibited Tregs' polarization by secreting cytokine or coactivators' expression. What's important, decreasing CCL5 protein levels by T- lymphocytes depletion during both murine and human MDSC-DCs in vitro induction could also acquire CD24+ MDSC-DCs. Conclusion Knockdown of CCL5 protein during MDSC-DCs culture might provide a promising method to acquire DC-based tumor vaccines with high antitumor activity.

Funder

The National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Literature and Literary Theory,History,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The future of cancer vaccines against colorectal cancer;Expert Opinion on Biological Therapy;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3