Design, Synthesis and Biological Evaluation of 2-Phenylquinazolin-4-yl 4-Methylbenzenesulfonate Derivatives as Anticancer Agents via Tubulin Inhibition

Author:

Goel Kapil Kumar12ORCID,Kharb Rajeev2,Rajput Satyendra Kumar1,Sharma Prince Prashant1,Mukherjee Monalisa3

Affiliation:

1. Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University)

2. Amity Institute of Pharmacy, Amity University

3. Amity Institute of Click Chemistry Research and Studies, Amity ­University

Abstract

AbstractMalignant behavior and multiple abnormal cellular functions have rendered cancer a great challenge for scientists to treat. The rising death toll presents an alarming situation, and the side effects associated with marketed drugs has further increased the quest to develop new anticancer drug molecules. We herein report a rationally designed 2,4-disubstituted quinazoline-based bioactive pharmacophore possessing different substitution patterns to obtain potent anticancer active agents targeting tubulin polymerization. In this series, two compounds showed potent cytotoxicity against all four cancer cell lines (MCF-7, MD-MBA-231, A549, and HCT-116) comparable to that of colchicine. The compounds showed cell cycle arrest in the G2/M phase and induced apoptosis, which showed these compounds might act via binding to the colchicine binding site. These results were further confirmed via tubulin polymerization inhibition, which showed a similar profile to colchicine. Compounds with a propargyl moiety showed very low cytotoxicity as compared to colchicines, even in the presence of a trimethoxy substituent at the quinazoline ring, except for compound case. Two compounds are obtained as potential lead compounds for the development of active anticancer agents, with one having a similar profile to colchicine activity on tubulin polymerization inhibition. These compounds represent promising leads that deserve further investigation and optimization.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3