Synthesis of New Structural Analogues of Natural Integrastatins with a Basic Epoxybenzo[7,8]oxocine Skeleton: Combined Experimental and Computational Study

Author:

Kulakov Ivan V.1ORCID,Stalinskaya Alena L.1,Chikunov Semyon Y.1,Pustolaikina Irina A.2,Gatilov Yuri V.3

Affiliation:

1. Institute of Chemistry, Tyumen State University

2. Karagandy University of the Name of Academician E. A. Buketov

3. N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science

Abstract

AbstractIn this work, the cyclization reactivity of various 3-acetyl-2-methylpyridines (including 3-acetyl-2-methylquinoline) containing both electron donor and acceptor substituents with salicylaldehyde into epoxybenzooxocino[4,3-b]pyridine derivatives was studied. The reactions were carried out in mild (under room temperature or reflux in 2-propanol) and harsh (in a sealed glass ampoule) conditions. It was shown that 3-acetyl-2-methylpyridines with an aryl substituent in the 4-position do not react with salicylaldehyde either under normal convection heating conditions or under more severe conditions. This effect was explained by the steric hindrance of the substituents using quantum chemical calculations. It was found that electron donor substituents in 3-acetyl-2-methylpyridines significantly facilitate cyclization in epoxybenzooxocino[4,3-b]pyridines. The presence of electron acceptor substituents (NO2 group for example) in the 5-position of pyridine prevents cyclization under normal conditions, but gives a rather high conversion to oxocinopyridines under more specific conditions. This effect is quantum-chemically explained by the decrease in the basicity of pyridine. Pyridines with two pairs of methyl groups in ortho-positions to the acetyl group are capable to form mixtures of regioisomeric epoxybenzooxocinopyridines. Further, epoxybenzooxocinopyridines with methyl and acetyl groups can form a mixture of diastereomeric bisoxocins under more specific conditions. All 17 initial pyridines were studied quantum-chemically in order to understand what features of their structure and properties affect the success of the cyclization reaction and the yield of the target product. The pyridine molecules were calculated by the DFT RB3LYP/6-311++G(d,p) method taking into account the alcohol solvent within the CPCM model using Gaussian-2016 program. It was shown that the absence of steric hindrances in the form of bulky substituents in 4-position of pyridines is the main factor affecting the success of the cyclization reaction. Also, the yield of the target product is affected by the CH-acidity of the methyl group in 2-position, which, in turn, is affected by electron-donating and electron-withdrawing substituents in the 5- and 6-positions.

Funder

Russian Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3