Early Repair of Aortic Wall Structural Defect by “Net” Endoprosthesis to Arrest the Aneurysm without Interference with Aortic Branch Vessel Perfusion

Author:

Nazari Stefano1ORCID

Affiliation:

1. Department of Research, Fondazione Alexis Carrel, Basiglio (MI), Italy

Abstract

AbstractCurrent treatments of aortic aneurysm include surgical or endovascular, respectively, anatomical or functional, substitution of the aneurysm tract; however, with these methods, perfusion of at least some collateral branches cannot be fully restored, leading to the risk of paraplegia. We present a novel endovascular “net” prosthesis to strengthen the aortic wall while preserving perfusion of collateral branches. This consists of a polyester mesh “net”-layered conduit in a variable cylindrical shape, which is personalized based on patient computed tomography scan images, and is defined by circular crossing spirals of a thin nitinol wire. The prosthetic conduit, shrunk by compressing the nitinol spirals, can be inserted into the vascular lumen and expanded in situ. Then, the insertion control device can be fully removed. Thus, the, “net” prosthesis, positioned inside the aorta in stable contact with the intimal wall for 2 to 5 months, is colonized by neointima and spontaneously moved deeper into the aortic wall in contact with the media, thus being ideally able to stabilize aortic diameter without interference with collateral branch blood perfusion. This new, (ideally) paraplegia-free procedure is aimed at curing the aortic wall structural defect, thus arresting the aneurysm from further progression. This contrasts with current treatments, indicated by aneurysm dimensions for their implied complication risk, which are actually for prophylaxis of impending rupture or dissection rather than fortification of the natural aorta. Moreover, this new approach can be used alongside open surgical procedures (personalized external aortic root support) as well as a frozen “net” elephant trunk technique, for full aortic stabilization.

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3