A Comparison of Methods to Detect Changes in Prediction Models

Author:

Schnellinger Erin M.1,Yang Wei1,Harhay Michael O.1,Kimmel Stephen E.2

Affiliation:

1. Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States

2. Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, United States

Abstract

Abstract Background Prediction models inform decisions in many areas of medicine. Most models are fitted once and then applied to new (future) patients, despite the fact that model coefficients can vary over time due to changes in patients' clinical characteristics and disease risk. However, the optimal method to detect changes in model parameters has not been rigorously assessed. Methods We simulated data, informed by post–lung transplant mortality data and tested the following two approaches for detecting model change: (1) the “Direct Approach,” it compares coefficients of the model refit on recent data to those at baseline; and (2) “Calibration Regression,” it fits a logistic regression model of the log-odds of the observed outcomes versus the linear predictor from the baseline model (i.e., the log-odds of the predicted probabilities obtained from the baseline model) and tests whether the intercept and slope differ from 0 and 1, respectively. Four scenarios were simulated using logistic regression for binary outcomes as follows: (1) we fixed all model parameters, (2) we varied the outcome prevalence between 0.1 and 0.2, (3) we varied the coefficient of one of the ten predictors between 0.2 and 0.4, and (4) we varied the outcome prevalence and coefficient of one predictor simultaneously. Results Calibration regression tended to detect changes sooner than the Direct Approach, with better performance (e.g., larger proportion of true claims). When the sample size was large, both methods performed well. When two parameters changed simultaneously, neither method performed well. Conclusion Neither change detection method examined here proved optimal under all circumstances. However, our results suggest that if one is interested in detecting a change in overall incidence of an outcome (e.g., intercept), the Calibration Regression method may be superior to the Direct Approach. Conversely, if one is interested in detecting a change in other model covariates (e.g., slope), the Direct Approach may be superior.

Funder

US National Institutes of Health

US National Institutes of Health (NIH) National Heart, Lung, and Blood Institute

Patient-Centered Outcomes Research Institute

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3