Rolandic Cortex Morphology: Magnetic Resonance Imaging-Based Three-Dimensional Cerebral Reconstruction Study and Intraoperative Usefulness

Author:

Bunyaratavej Krishnapundha1,Wangsawatwong Piyanat1

Affiliation:

1. Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand

Abstract

Abstract Background During brain surgery, the neurosurgeon must be able to identify and avoid injury to the Rolandic cortex. However, when only a small part of the cortex is exposed, it may be difficult to identify the Rolandic cortex with certainty. Despite various advanced methods to identify it, visual recognition remains an important backup for neurosurgeons. The aim of the study was to find any specific morphology pattern that may help to identify the Rolandic cortex intraoperatively. Materials and Methods Magnetic resonance imaging of the brain from patients with various conditions was used to create the three-dimensional cerebral reconstruction images. A total of 216 patients with 371 intact hemispheres were included. Each image was inspected to note the morphology of the Rolandic cortex and the suprasylvian cortex. Additionally, other two evaluators exclusively inspected the morphology of the suprasylvian cortex. Their observation results were compared to find the agreements. Results Several distinctive morphology patterns have been identified at the Rolandic cortex and the suprasylvian cortex including a genu, or a knob at the upper precentral gyrus, an angulation of the lower postcentral gyrus, a strip for pars opercularis, a rectangle for the lower precentral gyrus, and a triangle for the lower postcentral gyrus. Combined total and partial agreement of the suprasylvian cortex morphology pattern ranged from 60.4 to 85.2%. Conclusion The authors have demonstrated the distinctive morphology of the Rolandic cortex and the suprasylvian cortex. This information can provide visual guidance to identify the Rolandic cortex particularly during surgery with limited exposure.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3