Scutellaria baicalensis Pith-decayed Root Inhibits Macrophage-related Inflammation Through the NF-κB/NLRP3 Pathway to Alleviate LPS-induced Acute Lung Injury

Author:

Zhang Fanglei1,Ke Chang1,Zhou Zhongshi1,Xu Kang12,Wang Yan1,Liu Yanju12,Tu Jiyuan12

Affiliation:

1. School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, P. R. China

2. Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, P. R. China

Abstract

AbstractAcute lung injury (ALI) is one of the representative “lung heat syndromes” in traditional Chinese medicine (TCM). Scutellaria baicalensis is an herbal medicine used in TCM for treating lung diseases, due to its remarkable anti-inflammatory and antiviral effects. When used in TCM, S. baicalensis root is divided into two categories: S. baicalensis pith-not-decayed root (SN) and S. baicalensis pith-decayed root (SD). Compared to SN, SD has a better effect on lung diseases. We constructed a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model to study the pharmacodynamic mechanism of SD. The ethanolic extract of Scutellaria baicalensis pith-decayed root (EESD) significantly affected LPS-induced ALI by reducing alveolar interstitial thickening, pulmonary edema, and other pathological symptoms, decreasing the infiltration of inflammatory cells, especially macrophages, and inhibiting IL-1β, TNF-α, and IL-6 transcription and translation. Furthermore, in the THP-1 macrophage model induced by LPS, EESD inhibited the expression of phosphorylated nuclear factor inhibitory protein alpha (p-IκBα), phosphorylated nuclear factor-κB P65 (p-p65), cleaved-caspase-1, cleaved-IL-1β protein, and the release of inflammatory factors in the NF-κB/NLRP3 pathway, inhibiting macrophage function. In vivo experiments yielded similar results. Therefore, the present study clarified the potential of EESD in the treatment of ALI and revealed its potential pharmacodynamic mechanism by inhibiting the NF-κB/NLRP3 inflammasome pathway and suppressing the pro-inflammatory phenotype activation of lung tissue macrophages.

Funder

Natural Science Foundation of Hubei Province

Special project of guiding local science and technology development by the central government of Hubei Province

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3