Affiliation:
1. Department of Chemistry, Federal University of Minas Gerais
2. Chemistry of Bioactive Natural Products, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ)
3. Department of Biochemistry and Molecular Biology, Federal University of Viçosa
Abstract
AbstractThe enantioselective synthesis of the Hancock 1,2,3,4-tetrahydroquinoline alkaloids (S)-galipeine, (S)-cuspareine, (S)-galipinine, and (S)-angustureine and the nonnatural enantiomer (R)-galipeine is described herein. The target compounds were obtained in five steps from a racemic quinaldinic acid derived α-amino ester in overall yields of 21.2% to 37.5%. The synthetic route comprised two key steps: an enzymatic kinetic resolution to control the C-2 stereocenter, affording (R)- and (S)-α-amino esters as key chiral intermediates with 94% and 72% ee, respectively, and Wittig olefination of (R)- and (S)-α-amino aldehyde synthons with the corresponding phosphonium salts using a phase-transfer system (t-BuOH/CH2Cl2), thereby allowing the introduction of alkyl substituents at C-2. Finally, the enantioselective synthesis was concluded with the catalytic hydrogenation of olefinic bonds on the Wittig adducts to furnish the target Hancock alkaloids, including (R)-galipeine, whose synthesis is described here for the first time.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Subject
Organic Chemistry,Catalysis