Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem
-
Published:2023-08-09
Issue:2
Volume:25
Page:273-288
-
ISSN:0719-0646
-
Container-title:Cubo (Temuco)
-
language:
-
Short-container-title:Cubo (Temuco, Online)
Author:
Dehghanian MehdiORCID,
Park ChoonkilORCID,
Sayyari YaminORCID
Abstract
In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\alpha,\beta)$-functional inequality: \begin{align*} &\Vert \mathcal{F}(x+y+z)-\mathcal{F}(x+z)-\mathcal{F}(y-x+z)-\mathcal{F}(x-z)\Vert \nonumber\\ &\leq \Vert \alpha (\mathcal{F}(x+y-z)+\mathcal{F}(x-z)-\mathcal{F}(y))\Vert + \Vert \beta (\mathcal{F}(x-z)\\ &+\mathcal{F}(x)-\mathcal{F}(z))\Vert \end{align*} where $\alpha$ and $\beta$ are fixed nonzero complex numbers with $\vert\alpha \vert +\vert \beta \vert<2$ by using the fixed point method.
Publisher
Universidad de La Frontera
Subject
Geometry and Topology,Logic,Algebra and Number Theory,Analysis