Development and internal validation of an artificial intelligence-assisted bowel sounds auscultation system to predict early enteral nutrition-associated diarrhoea in acute pancreatitis: a prospective observational study

Author:

Liu Chengcheng12,Wu Li2,Xu Rui2,Jiang Zhiwei2,Xiao Xiaoping2,Song Nian1,Jin Qianhong1,Dai Zhengxiang3

Affiliation:

1. School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

2. Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

3. Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

Abstract

Aims/Background An artificial intelligence-assisted prediction model for enteral nutrition-associated diarrhoea (ENAD) in acute pancreatitis (AP) was developed utilising data obtained from bowel sounds auscultation. This model underwent validation through a single-centre, prospective observational study. The primary objective of the model was to enhance clinical decision-making by providing a more precise assessment of ENAD risk. Methods The study enrolled patients with AP who underwent early enteral nutrition (EN). Real-time collection and analysis of bowel sounds were conducted using an artificial intelligence bowel sounds auscultation system. Univariate analysis, multicollinearity analysis, and logistic regression analysis were employed to identify risk factors associated with ENAD. The random forest algorithm was utilised to establish the prediction model, and partial dependence plots were generated to analyse the impact of risk factors on ENAD risk. Validation of the model was performed using the optimal model Bootstrap resampling method. Predictive performance was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and an area under the receiver operating characteristic (ROC) curve. Results Among the 133 patients included in the study, the incidence of ENAD was 44.4%. Six risk factors were identified, and the model's accuracy was validated through Bootstrap iterations. The prediction accuracy of the model was 81.10%, with a sensitivity of 84.30% and a specificity of 77.80%. The positive predictive value was 82.60%, and the negative predictive value was 80.10%. The area under the ROC curve was 0.904 (95% confidence interval: 0.817–0.997). Conclusion The artificial intelligence bowel sounds auscultation system enhances the assessment of gastrointestinal function in AP patients undergoing EN and facilitates the construction of an ENAD predictive model. The model demonstrates good predictive efficacy, offering an objective basis for precise intervention timing in ENAD management.

Publisher

Mark Allen Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3