Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Bhilai, Raipur – 492 015, India
Abstract
Mechanical alloying is traditionally being used for developing novel alloys, which are difficult to prepare by conventional manufacturing routes, through solid state diffusion. It offers unique feature of extended solid solubility resulting in the formation of non-equilibrium immiscible phases that have huge potential in aerospace and defense applications. However, the development of intermetallic class of materials has always been a challenge. Titanium Aluminide, possessing various advantageous properties, has got limited practical usage owing to the difficulty in development. The current research focuses on developing Titanium Aluminide intermetallic material (TiAl) from elemental Aluminumand Titanium powders using high energy planetary ball milling process. The centrifugal force combined with high gravitational counterforce resulted in the formation of intermetallic phase with near stoichiometric ratio. The developed TiAl was subjected to various microstructural and morphological analysis to understand the mechanism of phase formation during the milling process. Results reveal new dimensions for developing intermetallic alloys for various advanced engineering applications.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献