Application of self-healing, swellable and biodegradable polymers for wound treatment

Author:

Agubata Chukwuma O1,Mbah Mary A1,Akpa Paul A2,Ugwu Godwin1

Affiliation:

1. 1 Department of Pharmaceutical Technology and Industrial Pharmacy University of Nigeria, Nsukka, Nigeria

2. 2 Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria

Abstract

Aim: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. Methods: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10–20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. Results: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. Conclusion: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3