In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing

Author:

Tahami Seyed Rasoul1,Nemati Nahid Hassanzadeh1,Keshvari Hamid2,Khorasani Mohammad Taghi13

Affiliation:

1. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

3. Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran

Abstract

Objective: The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. Method: Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. Results: Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. Conclusion: The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3