In vitro modelling of disease-induced changes in the diabetic wound fibroblast

Author:

Sorooshian Parviz1,Metcalfe Anthony D2,Lali Ferdinand V3

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Queen Victoria Hospital NHS Trust, East Grinstead, UK

2. School of Chemical Engineering, University of Birmingham, Birmingham, UK

3. Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospital, Harrow, UK

Abstract

Objective: Fibroblasts have been shown to play an increasingly important role within diabetic wounds. While several in vitro models of diabetic wound fibroblasts have been reported, none replicate the natural progression of the disease over time, recapitulating the acquisition of the diseased phenotype. Therefore, this study aimed to establish an in vitro model of the diabetic wound fibroblast through sustained exposure of healthy dermal fibroblasts to hyperglycaemia. Method: Primary human fibroblasts were isolated from discarded healthy skin tissue and were either exposed to normoglycaemic (control 5.5mM glucose) media or hyperglycaemic (25mM glucose) media for four weeks. Quantitative polymerase chain reaction was performed to measure the expression of inflammatory cytokines and chemokines. Results: In the hyperglycaemia model, stromal cell-derived factor (SDF)-1 expression remained consistently downregulated across all four weeks (p<0.01), while monocyte chemoattractant protein (MCP)-1 (p<0.001), interleukin (IL)-8 (p=0.847) and chemokine (C-X-C motif) ligand 1 (CXCL1) (p=0.872) were initially downregulated at one week followed by subsequent upregulation between 2–4 weeks. Conclusion: This hyperglycaemia model may serve as a useful tool to characterise pathological changes in the diabetic wound fibroblast and help identify candidate therapeutic targets, such as SDF-1, that may reverse the pathology.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3