Effectiveness of a polyhexamethylene biguanide-containing wound cleansing solution using experimental biofilm models

Author:

Rippon Mark12,Rogers Alan A3,Westgate Samantha4,Ousey Karen56789

Affiliation:

1. Visiting Clinical Research Associate, Huddersfield University, Huddersfield, UK

2. Medical Marketing Consultant, Daneriver Consultancy Ltd, Holmes Chapel, Cheshire, UK

3. Independent Wound Care Consultant, Flintshire, North Wales, UK

4. Executive Director, Perfectus Biomed Group, Cheshire, UK

5. Professor of Skin Integrity, Director for the Institute of Skin Integrity and Infection Prevention, University of Huddersfield Department of Nursing and Midwifery, Huddersfield, UK

6. Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia

7. Visiting Professor, RCSI, Dublin, Ireland

8. Chair IWII

9. President Elect ISTAP

Abstract

Objective: Antiseptics are widely used in wound management to prevent or treat wound infections, and have been shown to have antibiofilm efficacy. The objective of this study was to assess the effectiveness of a polyhexamethylene biguanide (PHMB)-containing wound cleansing and irrigation solution on model biofilm of pathogens known to cause wound infections compared with a number of other antimicrobial wound cleansing and irrigation solutions. Method: Staphylococcus aureus and Pseudomonas aeruginosa single-species biofilms were cultured using microtitre plate and Centers for Disease Control and Prevention (CDC) biofilm reactor methods. Following a 24-hour incubation period, the biofilms were rinsed to remove planktonic microorganisms and then challenged with wound cleansing and irrigation solutions. Following incubation of the biofilms with a variety of concentrations of the test solutions (50%, 75% or 100%) for 20, 30, 40, 50 or 60 minutes, remaining viable organisms from the treated biofilms were quantified. Results: The six antimicrobial wound cleansing and irrigation solutions used were all effective in eradicating Staphylococcus aureus biofilm bacteria in both test models. However, the results were more variable for the more tolerant Pseudomonas aeruginosa biofilm. Only one of the six solutions (sea salt and oxychlorite/NaOCl-containing solution) was able to eradicate Pseudomonas aeruginosa biofilm using the microtitre plate assay. Of the six solutions, three (a solution containing PHMB and poloxamer 188 surfactant, a solution containing hypochlorous acid (HOCl) and a solution containing NaOCl/HOCl) showed increasing levels of eradication of Pseudomonas aeruginosa biofilm microorganisms with increasing concentration and exposure time. Using the CDC biofilm reactor model, all six cleansing and irrigation solutions, except for the solution containing HOCl, were able to eradicate Pseudomonas aeruginosa biofilms such that no viable microorganisms were recovered. Conclusion: This study demonstrated that a PHMB-containing wound cleansing and irrigation solution was as effective as other antimicrobial wound irrigation solutions for antibiofilm efficacy. Together with the low toxicity, good safety profile and absence of any reported acquisition of bacterial resistance to PHMB, the antibiofilm effectiveness data support the alignment of this cleansing and irrigation solution with antimicrobial stewardship (AMS) strategies.

Publisher

Mark Allen Group

Subject

Nursing (miscellaneous),Fundamentals and skills

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3