1. [1] E. Alkan, H. Göral and D. C. Sertbaş, Hyperharmonic numbers can rarely be integers, Integers, 18 (2018), paper no. A43, 15 pp.
2. [2] Ç. Altuntaş, H. Göral and D. C. Sertbaş, The difference of hyperharmonic numbers via geometric and analytic methods, J. Korean Math. Soc., 59 (2022), 1103–1137.
3. [3] R. A. Amrane and H. Belbachir, Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., 37 (2010), 7–11.
4. [4] R. A. Amrane and H. Belbachir, Are the hyperharmonics integral? A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, 349 (2011), 115–117.
5. [5] W. D. Banks and I. E. Shparlinski, Arithmetic properties of numbers with restricted digits, Acta Arith., 112 (2004), 313–332.