Affiliation:
1. Space Research Institute
2. Schmidt Institute of Physics of the Earth, RAS
3. Geophysical Center RAS
4. Nagoya University
Abstract
The space physicists and the earthquake (EQ) prediction community exploit the same instruments – magnetometers, but for different tasks: space physicists try to comprehend the global electrodynamics of near-Earth space on various time scales, whereas the seismic community develops electromagnetic methods of short-term EQ prediction. The lack of deep collaboration between those communities may result sometimes in erroneous conclusions. In this critical review, we demonstrate some incorrect results caused by a neglect of specifics of geomagnetic field evolution during space weather activation. The considered examples comprise: Magnetic storms as a trigger of EQs; ULF waves as a global EQ precursor; Geomagnetic impulses before seismic shocks; Long-period geomagnetic disturbances generated by strong EQs; Discrimination of underground ULF sources by amplitude-phase gradients; Depression of ULF power as a short-term EQ precursor; and Detection of seimogenic emissions by satellites. To verify the reliability of the above widely disseminated results data from available arrays of fluxgate and search-coil magnetometers have been re-analyzed. In all considered events, the “anomalous” geomagnetic field behavior can be explained by global geomagnetic activity, and it is apparently not associated with seismic activity. This critical review does not claim that ULF electromagnetic field cannot be used as a sensitive indicator of the EQ preparation processes, but we suggest that both communities must cooperate their studies more tightly using data exchange, combined usage of magnetometer networks, organization of CDAW for unique events, etc.
Publisher
Geophysical Center of the Russian Academy of Sciences
Reference127 articles.
1. Impact of Natural Extreme Events on Geophysical Fields in the Environment
2. Response of the seismic background to geomagnetic variations
3. Novelty detection in time series of ULF magnetic and electric components obtained from DEMETER satellite experiments above Samoa (29 September 2009) earthquake region
4. Bakhmutov, V. G., F. I. Sedova, and T. A. Mozgova (2003), Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998, Ukrainian Antarctic Journal, (1), 54–60, https://doi.org/10.33275/1727-7485.1.2003.624 (in Ukranian)., Bakhmutov, V. G., F. I. Sedova, and T. A. Mozgova (2003), Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998, Ukrainian Antarctic Journal, (1), 54–60, https://doi.org/10.33275/1727-7485.1.2003.624 (in Ukranian).
5. Best, A., S. M. Krylov, I. P. Kurchashov, I. S. Nikomarov, and V. A. Pilipenko (1986), Gradient-time analysis of Pc3 pulsations, Geomagnetism and Aeronomy, 26(6), 980–984 (in Russian)., Best, A., S. M. Krylov, I. P. Kurchashov, I. S. Nikomarov, and V. A. Pilipenko (1986), Gradient-time analysis of Pc3 pulsations, Geomagnetism and Aeronomy, 26(6), 980–984 (in Russian).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献